7,878 research outputs found

    Spin Gap of Two-Dimensional Antiferromagnet Representing CaV4_4O9_9

    Full text link
    We examined a two-dimensional Heisenberg model with two kinds of exchange energies, JeJ_e and JcJ_c. This model describes localized spins at vanadium ions in a layer of CaV4_4O9_9, for which a spin gap is found by a recent experiment. Comparing the high temperature expansion of the magnetic susceptibility to experimental data, we determined the exchange energies as JeJ_e \simeq 610 K and JcJ_c \simeq 150 K. By the numerical diagonalization we estimated the spin gap as Δ0.2Je\Delta \sim 0.2J_e \simeq 120 K, which consists with the experimental value 107 K. Frustration by finite JcJ_c enhances the spin gap.Comment: 12 pages of LaTex, 4 figures availavule upon reques

    Superconductivity in S-substituted FeTe

    Full text link
    We have successfully synthesized a new superconducting phase of FeTe1-xSx with a PbO-type structure. It has the simplest crystal structure in iron-based superconductors. Superconducting transition temperature is about 10 K at x = 0.2. The upper critical field Hc2 was estimated to be ~70 T. The coherent length was calculated to be ~2.2 nm. Because FeTe1-xSx is composed of nontoxic elements, this material is a candidate for applications and will activate more and more research on iron-based superconductor.Comment: 13 pages, 10 figure

    Prebiotic Organic Microstructures

    Get PDF
    Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N2 and H2O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced wide variety of proteinous and non-proteinous amino acids after HCl hydrolysis. The enantiomer analysis for D-, L- alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. Considering hydrothermal activity, the presence of CO2 and H2, of a ferromagnesian silicate mineral environment, of an Earth magnetic field which was much less intense during Archean times than nowadays and consequently of a proton excitation source which was much more abundant, we propose that our laboratory organic microstructures might be synthesized during Archean times. We show similarities in morphology and in formation with some terrestrial Archean microstructures and we suggest that some of the observed Archean carbon spherical and filamentous microstructures might be composed of abiogenic organic molecules. We further propose a search for such prebiotic organic signatures on Mars. This article has been posted on Nature precedings on 21 July 2010 [1]. Extinct radionuclides as source of excitation have been replaced by cosmic radiations which were much more intense 3.5 Ga ago because of a much less intense Earth magnetic field. The new version of the article has been presented at the ORIGINS conference in Montpellier in july 2011 [2] and has since been published in Origins of Life and Evolution of Biospheres 42 (4) 307-316, 2012. 
DOI: 10.1007/s11084-012-9290-5 

&#xa

    Residue network in protein native structure belongs to the universality class of three dimensional critical percolation cluster

    Full text link
    A single protein molecule is regarded as a contact network of amino-acid residues. Some studies have indicated that this network is a small world network (SWN), while other results have implied that this is a fractal network (FN). However, SWN and FN are essentially different in the dependence of the shortest path length on the number of nodes. In this paper, we investigate this dependence in the residue contact networks of proteins in native structures, and show that the networks are not SWN but FN. FN is generally characterized by several dimensions. Among them, we focus on three dimensions; the network topological dimension DcD_c, the fractal dimension DfD_f, and the spectral dimension DsD_s. We find that proteins universally yield Dc1.9D_c \approx 1.9, Df2.5D_f \approx 2.5 and Ds1.3Ds \approx 1.3. These values are in surprisingly good coincidence with those in three dimensional critical percolation cluster. Hence the residue contact networks in the protein native structures belong to the universality class of three dimensional percolation cluster. The criticality is relevant to the ambivalent nature of the protein native structures, i.e., the coexistence of stability and instability, both of which are necessary for a protein to function as a molecular machine or an allosteric enzyme.Comment: 4 pages, 3 figure
    corecore